
Continuous time optimal control - the basics and applications

The general continuous time constrained optimal control problem can be written in the following

form

max
{us|xs}t1s=t0

F =

t1∫
t0

f (t, xt, ut) dt

 (1)

s.t.
dxt
dt
≡ ẋt = g (t, xt, ut) (2)

x (t0) = x0, x (t1) is free. (3)

For simplicity in the reminder of the text assume that f and g are continuously differentiable

functions of time and u is piecewise continuous function of time. The constraint (2) is the law

of motion of the state variable xt which is predetermined at the beginning of each "period" (e.g.,

capital). Meanwhile ut is the control variable (e.g., the amount of consumption) which, given the

value of xt and its law of motion (2), we choose in order to maximize F (e.g., the lifetime utility

of household). The solution of this problem is the optimal path of state and control variables,

(x∗t , u
∗
t ). This path should be feasible. In other words, it should satisfy the law of motion or the

dynamic constraint (2) and the initial condition (3). Moreover, given the definition of control and

state variables u∗t = u∗t (xt). The values of x (t1) and u (t1) satisfy maximization problem (i.e., these

values are a choice).

Digression: When we consider a household’s intertemporal problem we - usually - have

f (t, xt, ut) = e−ρtf̃ (ut (xt)) ,

where e−ρt is the discounting function and ρ is the discount rate, f̃ is the instantaneous (one

period) utility from consumption ct (≡ ut) - erroneously we use the letter u for f̃ . The optimal
consumption c∗t , in turn, is function of capital kt (≡ xt). Meanwhile, the constraint (2) represents
the accumulation rule of assets/capital - in such case we basically solve the optimal consumption

and saving paths, where the latter determines the optimal path of capital.

The rigorous approach to solving the problem is through "Lagrangian." Let qt be the Lagrange

multiplier of the constraint (2). The optimal problem written in terms of Lagrangian is the following.

max
{us|xs}t1s=t0

L =

t1∫
t0

{f (t, xt, ut) + qt [g (t, xt, ut)− ẋt]} dt

 .

Integrate the last term by parts

−
t1∫
t0

qtẋtdt = −
t1∫
t0

qtdxt = −qt1xt1 + qt0xt0 +

t1∫
t0

xtq̇tdt
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and rewrite the L

max
{us|xs}t1s=t0

L =

t1∫
t0

[f (t, xt, ut) + qtg (t, xt, ut) + q̇txt] dt− q (t1)x (t1) + q (t0)x (t0)

 .

Necessary conditions

Let u∗t be the optimal control function. Construct a family of "comparison" controls u
∗
t +αht, where

ht is some function and α is a real number. Denote y (t, α) the path of the state variable generated

by the control u∗t +αht. Assume that y (t, α) is differentiable in arguments and y (t0, α) = x (t0) for

any α [i.e., the optimal path x∗t and y (t, α) start from the same point]. Notice that y (t, 0) = x∗t .

With this comparison controls the value of the Lagrangian L is

L (α) =

t1∫
t0

[f (t, y (t, α) , u∗t + αht) + qtg (t, y (t, α) , u∗t + αht) + q̇ty (t, α)] dt

−q (t1) y (t1, α) + q (t0)x0.

Further, for simplicity let L (α) have one and interior maximum and let it be differentiable.

Consider the following first order condition with slight abuse of previous notation

0 =
dL (α)

dα

∣∣∣∣
α=0

≡ L′α (0) (4)

=

t1∫
t0

(
f ′xy
′
α + qtg

′
xy
′
α + q̇ty

′
α + f ′uht + qtg

′
uht
)
dt

−q (t1) y′α (t1, 0) .

Apparently, the exact value of the RHS of this expression depends on qt. It depends also on ht and

the way ht influences the path of the state variable y (t, α). Meanwhile, the condition (4) should

hold for any ht (thus any y′α). Therefore, one should select qt (and q̇t) so that it eliminates the

influence of ht - note that we are basically deriving the envelope condition which states that the

gradient of the maximand at the optimal point is orthogonal Select

q̇t = −
[
f ′x (t, x∗, u∗) + qtg

′
x (t, x∗, u∗)

]
(5)

q (t1) = 0. (6)

Under such choice,

0 = L̃′ (0) (7)

=

t1∫
t0

[
f ′u (t, x∗, u∗) + qtg

′
u (t, x∗, u∗)

]
htdt,

2



which should hold for any ht. Therefore, it should hold also for ht = f ′u (t, x∗, u∗) + qtg
′
u (t, x∗, u∗),

which means that
t1∫
t0

[
f ′u (t, x∗, u∗) + qtg

′
u (t, x∗, u∗)

]2
htdt = 0. (8)

This in turn implies that

f ′u (t, x∗, u∗) + qtg
′
u (t, x∗, u∗) = 0. (9)

The equations (5), (6), and (9) are the necessary conditions for optimality. Together with (2)

and (3) they determine the optimal path of control and state variables (x∗t , u
∗
t ).

A simple way for deriving the necessary conditions

Form a Hamiltonian:

H (t, xt, ut, qt) ≡ f (t, xt, ut) + qtg (t, xt, ut) ,

where qt is the costate variable and is part of the solution to the optimal problem. The necessary

conditions are obtained as:

∂H

∂u
= 0, (10)

−∂H
∂x

= q̇, (11)

∂H

∂q
= ẋ. (12)

Notice that (10) is the same as (9), (11) is the same as (5), and (12) is (2). In addition, one gets an

obvious condition x (t0) = x0 and q (t1) = 0. The latter plays the role of transversality condition

(TVC) in terms of finite time problem.

Digression: The TVC requires that in a dynamically optimal path the choices are made in a
way that ensures that at the end of the time horizon the state variable (e.g., capital) has no value

and therefore the constraint is not binding. In economic terms, one wants the value of capital in

terms of utility to be zero at the planning horizon. If its value is positive then at the end of the time

the choice leaves a positive value of capital that gives no utility, which is against the optimality.

In economic terms, the costate variable measures the shadow value of the associated state vari-

able. Hence, it captures the gains (value) in the optimal control problem that stem from marginally

increasing the state variable.

Suffi cient conditions

In order the necessary conditions to be also suffi cient we need further conditions.

• the functions f and g are concave in both arguments

• the optimal trajectories of x, u, and q satisfy the necessary conditions
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• xt and qt are continuous functions with qt ≥ 0 for all t and if g is nonlinear in x or u, or both.

In order to prove the suffi ciency define f∗ ≡ f (t, x∗, u∗) and g∗ ≡ g (t, x∗, u∗) and

D ≡
t1∫
t0

(f∗ − f) dt.

Given that we are solving for a maximum we need to show that

D ≥ 0.

Since f is concave

f∗ − f ≥ f∗′x (x∗ − x) + f∗′u (u∗ − u) .

Therefore,

D ≥
t1∫
t0

[
f∗′x (x∗ − x) + f∗′u (u∗ − u)

]
dt (13)

=

t1∫
t0

[(x∗ − x) (−qg∗x − q̇) + (u∗ − u) (−qg∗u)] dt.

Notice that

t1∫
t0

− q̇ (x∗ − x) dt = −
t1∫
t0

(x∗ − x) dq = − (x∗ − x) q|t1t0 +

t1∫
t0

(g∗ − g) qdt

=

t1∫
t0

(g∗ − g) qdt

since x∗ (t0) = x (t0) and q (t1) = 0. Therefore, (13) can be written as

D ≥
t1∫
t0

[(g∗ − g)− g∗x (x∗ − x)− g∗u (u∗ − u)] qdt ≥ 0.

The latter integral is greater or equal to zero since q ≥ 0 and g is a concave function of x and u.

This shows that the necessary conditions together with concavity of f and g and non-negativity of

q are also suffi cient conditions.
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Infinite horizon discounted problem

A usual economic problem is written as

max
{us|xs}∞s=0

U =

∞∫
0

f̃ (xt, ut) e
−ρtdt

 (14)

s.t.

ẋt = g (t, xt, ut) (15)

x (0) = x0 (16)

Notice that while f̃ - the instantaneous utility - is at time t the costate involves the value of changing

the state from xt incrementally over time, i.e., to t + dt. Thus the costate (and the Hamiltonian)

has to take this into account. The current value Hamiltonian (discount factor = 1) is

HC = eρtH = f̃ (xt, ut) + q̃tg (t, xt, ut) ,

q̃t = qte
ρt.

While the present value Hamiltonian (discount factor = e−ρt) is then

HP = f̃ (xt, ut) e
−ρt + qtg (t, xt, ut) .

The necessary conditions for optimality are

HC
u = f̃u (xt, ut) + q̃tgu (t, xt, ut) = 0,

d

dt
q̃t = ρq̃t −HC

x = ρq̃t −
[
f̃x (xt, ut) + q̃tgx (t, xt, ut)

]
,

lim
t→∞

e−ρtqtxt = 0,

where the last condition is the TVC for infinite horizon optimal problem. It states that the value

of state variable in terms of utility should be zero in the limit, t =∞.

Many states and controls

There could be many state and control variables - the numbers do not need to coincide. For

more than one state simply one adds extra costate variables (multiplying the RHS of the dynamic

constraints) to the Hamiltonian. For more than one control, one needs to derive one optimal

condition for each control variable.

Continuous time Bellman equation (Hamilton-Jacobi-Bellman equation)

This section is for those who are familiar with recursive dynamic programming in discrete time. It

illustrates the analogy between continuous time necessary conditions and the conditions derived for
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discrete time. Here I consider only the discounted problem, though all the logic can be applied for

the more general case.

With a slight abuse of notation define the maximized value of the objective function as a function

of the initial state xt and initial time t [it’s suffi cient since ut = u (xt)].

V (t, xt) = max
{us:ẋs=g(xs,us)|xs}∞s=t


∞∫
t

f̃ (xs, us) e
−ρ(s−t)ds

 .

This can be rewritten in recursive form in the following way:

V (t, xt) = max
{us:ẋs=g(xs,us)|xs}∞s=t


t+∆t∫
t

f̃ (xs, us) e
−ρ(s−t)ds+ e−ρ∆tV (t+ ∆t, xt+∆t)

 ,

for any ∆t.

Subtract from both sides V (t, xt) and divide by ∆t.

0 = max
{us:ẋs=g(xs,us)|xs}∞s=t

 1

∆t

t+∆t∫
t

f̃ (xs, us) e
−ρ(s−t)ds+

e−ρ∆tV (t+ ∆t, xt+∆t)− V (t, xt)

∆t

 .

Take the limit ∆t→ 0 (i.e., continuous time). By L’Hopital’s rule

lim
∆t→0

1

∆t

t+∆t∫
t

f̃ (xs, us) e
−ρ(s−t)ds = f̃ (xt, ut) .

Meanwhile, apply the definition of differential in order to get

lim
∆t→0

e−ρ∆tV (t+ ∆t, xt+∆t)− V (t, xt)

∆t
=

lim
∆t→0

[(
e−ρ∆t − 1

)
V (t+ ∆t, xt+∆t)

∆t
+
V (t+ ∆t, xt+∆t)− V (t, xt+∆t)

∆t
+
V (t, xt+∆t)− V (t, xt)

∆t

]

−ρV (t, xt) + V̇ (t, xt) + V ′x (t, xt) ẋt.

In sum this means that

ρV (t, xt) = max
ut|xt

{
f̃ (xt, ut) + V ′x (t, xt) g (xt, ut) + V̇ (t, xt)

}
, (17)

which is the Hamilton-Jacobi-Bellman equation. The second term in RHS captures the value gains

from marginal change in the state variable, while the third term stands for the gains over time. The

maximization gives the FOC:

f̃u + V ′xgu = 0,
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which is the necessary condition for optimality, HC
u = 0, where V ′x = q̃t. This shows how the costate

captures the effect of the change of the state on the objective function in current value terms. It

also shows that q̃t depends on dynamic decisions.

The envelope condition is

ρV ′x = f̃x + V ′xgx + V ′′xxg + V̇ ′x.

This is the necessary condition which describes the dynamics of the costate variable d
dt q̃t given that

ẋt = g (xt, u
∗
t ).
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